If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3c^2)-2c-2=8
We move all terms to the left:
(3c^2)-2c-2-(8)=0
We add all the numbers together, and all the variables
3c^2-2c-10=0
a = 3; b = -2; c = -10;
Δ = b2-4ac
Δ = -22-4·3·(-10)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{31}}{2*3}=\frac{2-2\sqrt{31}}{6} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{31}}{2*3}=\frac{2+2\sqrt{31}}{6} $
| 6t+12=2t+36 | | 7(2e+3)-8=6e+29 | | (80-2x)(80-2X)X=0 | | 12m-6=10m | | 4(2x-3)=6x+12 | | 20x+15x=35x+12x | | x+16=123 | | Fx=5x-2 | | 7x^2+10x=1 | | 6u=-14 | | Y2+17y+144=y2+7y+184 | | Y2+17y+144=y2+7y+18= | | N+j+7=53 | | N+j-7=53 | | N+n-7=53 | | N+n+7=53 | | z/9-2=4 | | 5x^2-10x-50=29 | | 31=x÷5+6 | | 8x=8^2-9 | | x=8x-10 | | 6y^2-32y+96=0 | | 3-3(5m-6)=-24 | | 2(4x)-16=32 | | 10=-6+x/4 | | 5^(5x+5)=125^x | | 4(2x+6)=5(3x+2) | | Xx8=304 | | -1+x/15=2 | | 3y+9=30;y | | x+5=6;x | | 3(2x+3)=4(x+2) |